magma
Matemática
Verbete 1 de 1
substantivo
Contexto: "Very importantly, this already gives hints which groups are suited the most for an introductory course as well as the fact that the binary operation is of such a relevance that focusing on Magmas first is a crucial part of entering abstract algebra. This is also important with regards to practicability of the teaching concept; exploring groups would require additional activities for inverses, the neutral element and associativity."
Fonte: Veith, J. M., & Bitzenbauer, P. (2022). What Group Theory Can Do for You: From Magmas to Abstract Thinking in School Mathematics. Mathematics, 10(5), 703. https://doi.org/10.3390/math10050703
Fonte: Veith, J. M., & Bitzenbauer, P. (2022). What Group Theory Can Do for You: From Magmas to Abstract Thinking in School Mathematics. Mathematics, 10(5), 703. https://doi.org/10.3390/math10050703
Termo equivalente: magma
Definição: "a magma is an algebraic structure (S,f) consisting of an underlying set S and a single binary operation f : S² → S. Much is known about specific families of magmas (semigroups, monoids, groups, semilattices, quasigroups, etc.) as well as magmas in general as treated in universal algebra."
Fonte: Aten, C. (2017). The Topology of Magmas.
Fonte: Aten, C. (2017). The Topology of Magmas.
Definição em português: "Um magma é uma estrutura algébrica (S, f) que consiste em um conjunto subjacente S e uma única operação binária f : S² → S. Muito se sabe sobre famílias específicas de magmas (semigrupos, monoides, grupos, semirreticulados, quasigrupos, etc.), assim como sobre magmas em geral, tratados na álgebra universal."