Leray's Inequality
Matemática
Verbete 1 de 1
substantivo
Contexto: "It suffices to take s = 1 in remark (1.2.i) to get a version of Leray's Inequality (9) for the MHD Equations $$ ||(\nabla u, \nabla b)(t)||_{L^2(\mathbb{R}^3)}\geq \frac{c\lambda^{3/4}}{(T^{\ast}-t)^{\frac{1}{4}}} $$ for all $ t\in (0, T^{\ast}), T^\ast <\infty $."
Fonte: Marcon, D., Melo, W., Schütz, L., & Ziebell, J. S. (2017). Lower bounds of solutions of the Magnetohydrodynamics Equations in Homogeneous Sobolev Spaces. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 5(1).
Fonte: Marcon, D., Melo, W., Schütz, L., & Ziebell, J. S. (2017). Lower bounds of solutions of the Magnetohydrodynamics Equations in Homogeneous Sobolev Spaces. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 5(1).
Termo equivalente: Desigualdade de Leray
Definição: "Represents “The problem about whether or not there exist stationary solutions to the Navier-Stokes equations has been an open problem despite of a lot of efforts of many mathematicians.”"
Fonte: Takeshita, A. (1993). A remark on Leray’s inequality. Pacific journal of mathematics, 157(1), 151-158.
Fonte: Takeshita, A. (1993). A remark on Leray’s inequality. Pacific journal of mathematics, 157(1), 151-158.
Definição em português: "Representa "O problema sobre a existência ou não de soluções estacionárias para as equações de Navier-Stokes que tem sido um problema em aberto apesar do esforço de muitos matemáticos.""