Glossário


Contribua com o glossário

Benameur’s estimate

Matemática
Verbete 1 de 1

substantivo

Contexto: "In this case, the choice $\delta=1/2$ provides us with Benameur's estimate, see (3, theorem 1.3 (1.2))."
Fonte: Marcon, D., Melo, W., Schütz, L., & Ziebell, J. S. (2017). Lower bounds of solutions of the Magnetohydrodynamics Equations in Homogeneous Sobolev Spaces. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 5(1).

Termo equivalente: Estimativa de Benameur

Definição: "Is represented by the result "Let $u\in\mathcal{C}((0,T_{v}^{\ast}), H^5(\mathbb{R}^3)) (s>5/2)$ be a maximal solution of ($NS_v$), given by Theorem 1.1. Suppose that $T_{v}^{\ast}<\infty$, then $$ \frac{c(s)v^{s/3}}{(T_{v}^{\ast}-t)^{s/3}} \leq ||u(t)||^{\frac{2s}{3}-1}_{L^2} ||u(t)||_{H^5}.$$""
Fonte: Benameur, J. (2010). On the blow-up criterion of 3D Navier–Stokes equations. Journal of mathematical analysis and applications, 371(2), 719-727.

Definição em português: "É representado pelo resultado "Seja $u\in\mathcal{C}((0,T_{v}^{\ast}), H^5(\mathbb{R}^3)) (s>5/2)$ uma solução máxima de ($NS_v$), dado pelo Teorema 1.1. Suponha que $T_{v}^{\ast}<\infty$, então $$ \frac{c(s)v^{s/3}}{(T_{v}^{\ast}-t)^{s/3}} \leq ||u(t)||^{\frac{2s}{3}-1}_{L^2} ||u(t)||_{H^5}.$$""